[[Image:Diagramma di coppia motrice motore monocilindrico.svg|thumb|Turning moment diagram for a four stroke internal combustion engine 4T and 2T:
A) intake (4T); piston return to TDC (2T)
B) compression (4T); piston descent at PMI (2T)
C) expansion
D) exhaust
α) time average engine]]
The power band of an internal combustion engine or electric motor is the range of operating speeds under which the engine or motor is able to output the most power, that is, the maximum energy per unit of time. This usually means that maximum acceleration can be achieved inside this band (often at the cost of lower efficiency). While engines and motors have a large range of operating speeds, the power band is usually a much smaller range of engine speed, only half or less of the total engine speed range (electric motors are an exception—see the section on electric motors below).
Specifically, power band is the range of RPM around peak Horsepower output. The power band of an internal combustion gasoline automobile engine typically starts at midrange engine speeds (around 4,000 RPM) where maximum torque is produced, and ends below the redline after reaching maximum power (typically between 6,200 RPM and 6,800 RPM). Diesel engines in cars and small trucks may develop maximum torque below 2,000 RPM with the power peak 4,000 RPM or below.
A narrow power band is often compensated for by a power-splitting device such as a clutch or torque converter to efficiently achieve a wide range of speeds. A continuously variable transmission can also avoid the issues of a narrow power band by keeping the engine running at an optimal speed.
In turbocharged and supercharged engines with potential for abundant torque, an intake pressure regulation system often limits torque to a near-constant figure across the engine speed range to reduce stresses on the engine and provide consistent handling without decreasing peak power.
In more common applications, a modern, well designed and engineered fuel injection, computer-controlled, multi-valve and optionally variable-valve timing-equipped gasoline engine using good fuel can achieve remarkable flexibility in automobile applications, with sufficient torque even at low engine speeds and a relatively flat power output from 1,500 to 6,500 RPM, allowing easy cruising and forgiving low-speed behaviour. However, achieving maximum power for strong acceleration or high road speed still requires high RPM. Though the literal power band covers most of the operating RPM range, particularly in first gear (as there is no lower gear to shift down to, and no "flat spot" in which the engine does not produce any power), the effective band changes in each gear, becoming the range limited at the upper end by either the limiter, or a point roughly located between peak power and the redline where power drops off, and at the lower end the engine's idling speed.
Larger diesel engines in locomotives and some watercraft use diesel-electric drives. This eliminates the complexities of extremely low gearing, as described below.
The largest ("low-speed") diesels—large generators on land and marine diesels at sea—may turn at only hundreds of RPM or even below, with idling speeds of 20-30 RPM. These engines are usually two-stroke diesel engines.
For example, the AC motor found in the Tesla Roadster (2008) produces near constant maximum torque from 0 to about 6000 RPM, while maximum power occurs at about 10000 RPM, long after torque begins to drop off. The Roadster's redline is 14000 RPM. Other electric motors may in fact produce maximum torque throughout their entire operating range, although their maximum operating speed may be limited for improved reliability.
|
|